
NASA Technical Memorandum 104175

.t
''

t

A PC-BASED BUS MONITOR PROGRAM FOR USE

WITH THE TRANSPORT SYSTEMS RESEARCH

VEHICLE RS-232 COMMUNICATION INTERFACES

Wesley C. Easley

December 1991

(NASA-TM-I04175) A PC-BASED BUS MONITOR

PROGKAM FOR USE WITH THE T_ANSPORT SYSTrMS

RESEARCH VEHICLE nS-232 COMMUNICATION

INTFRFACES (NASA) 43 p CSCI IlG

Nalional Aeron;_ulics and

Spaco. Adminlslralion

Langley Research Center

Hampton,Virginia23665-5225

G3/04

N72-15062

Unc1_s

0061932

Table of Contents

Summary ...

List of Figures ...

Credits ...

1.0 Introduction ...

2.0 List of Abbreviations

3.0 USER's GUIDE ...

3.1 General Description and Initialization

3.2 Communication Port Hardware Variations

3.3 Mode Select Features

3.3 1 Log File Toggle

3 3 2 Full/Half Duplex Mode

3 3 3 Exit to Dos

3 3 4 Carriage Return/Line Feed Toggle

3 3 5 Moving the Cursor Among Windows

3 3 6 Clearing the Window Containing the Cursor ...

3 3 7 Transmission Modes

3 3 8 Upload of a File

3.3 9 Character or Binary Display Mode

3.3 i0 Communication Port Parameter Select

3.3.11 Saving Screen Contents to a File

4.0 PROGRAMMING TECHNIQUES and ALGORITHMS

4.1 General Description

4.2 Check for Serial Communication Port Hardware

iii

v

vi

1

3

5

5

5

6

6

6

?

7

7

7

8

8

8

9

9

9

I0

i0

4.3 Communication Port Initialization

4.3.1 Interrupt Interception and Redirection

4.3.2 Communication Parameter Setup

4.4 Screen Layout Implementation

4.4.1 Identification of Video Memory Locations

4.4.2 Accessing Video Memory

4.4.3 Printing Reverse Video Bars and

Status Messages

4.5 Main Program Operation

4.5.1 Checking for Keyboard Entry

4.5.2 Keyboard Mode Control Entries

4.5.3 Keyboard Entries Not Requiring Mode

Mode Control Action

4.5.3.1 Printing to the Screen

4.5.3.2 Transmission to COM Ports

4.5.4 Communication Port Input Handling

4.5.4.1 Software First, In First Out (FIFO)

Circular Buffer

4.5.5 No Communication Port Input Waiting

4.5.6 Byte Waiting in COM 1 Input Buffer

4.5.6.1 Hexadecimal Display of

Received Bytes

4.5.7 Log File for Received Bytes

4.5.8 Input from Communication Port 2

4.6 TSRV Grid Applications

5.0 CONCLUDING REMARKS

References ..

ii

12

12

13

13

14

15

16

16

16

18

18

19

20

20

21

21

21

22

23

23

23

25

ii

SUMMARY

Utilization of RS-232 serial data busses in the The Transport

Systems Research Vehicle (TSRV) at the NASA Langley Research

Center has increased beyond normal terminal interfaces. The Data

Link and Differential Global Positioning Satellite (DGPS) flight

programs conducted during 1990 made extensive use of RS-232 as a

real-time experiment critical data transfer medium. At least two

windshear experiments will also require this data bus for real-

time transfer of critical data.

Various software modules, all task specific, are required for

interfacing the TSRV computers and other peripherals connected via

RS-232 busses. To enhance such development tasks, a PC-based RS-

232 monitoring system has been developed. An important feature of

the system is the capability for simultaneous real-time monitoring

of two data lines with each line's input displayed in a separate

window on the PC screen. A number of online selectable features

such as binary display, transmission to either or both ports, and

binary log files are incorporated.

The RS-232 bus monitoring system was developed by writing

communication software for an IBM PC or compatible using two of

the four normal communication ports (COM 1 through COM 4). Also

an added advantage for TSRV use was gained by development of a

special configuration for the TSRV Grid laptop computers, a task

requiring software adaptation to a Grid nonstandard serial port.

User documentation and discussions of the algorithms used to

develop the RS-232 bus monitor and control program are contained

in this document. Detailed technical and tutorial discussions of

C and assembly language programming are not included, but numerous

references containing that type of information are cited.

ill

NO.

1

2

3

6

7

8

i0

Ii

LIST OF FIGURES

Title

General Screen Layout

Typical Real Time Monitor Setup

Page

26

27

Example of Operation With Two COM
Ports Connected 28

Example of Operation When COM Port 2
Hardware is Not Available, 29

3O
Example of Operation With Received Bytes

Displayed in Raw Binary Form

Display of Help Screen 31

Typical Setup for Use of Transmit Mode 32

33
Display of On-Line Communication Parameter
Select Menus

34
Flowchart of Program Operations, Setup and

Keyboard Functions

35
Flowchart of Program Operations, Serial

Port Input Handling

36
Software Circular FIFO Buffer Technique Used

to Collect Input Bytes From Serial Ports

v

CREDITS

Technical information regarding Grid Input/Output design and

hardware interrupt configuration was provided by Jim Kuhfeld of

the Grid staff.

Turbo C and Turbo Assembler are copyrighted products of Borland

International. Development of software contained in this document

used Turbo C version 2.0, Serial Number D2C0307241, Turbo C++

version 1.0, Serial Number TAI41BI0758682, and Turbo

Debugger/Assembler version 2.0, Serial Number TAI52BI0258774.

MS-DOS is a copyrighted product of Microsoft Corporation.

vl

1.0 INTRODUCTION

The Transport Systems Research Vehicle (TSRV) is a research flight
system operated by the Advanced Transport Operating Systems
Program Office (ATOPSPO)at the NASA Langley Research Center.
Real-time data transfer among experimental system computers and
other equipment units in the TSRV system is accomplished using a
variety of data bus types. ARINC 429, Digital Autonomous Terminal
Access Communication (DATAC), high-speed parallel Direct Memory
Access (DMA), and specialized high bit rate serial busses are
prominent examples.

RS-232 communication links have traditionally been used only for
interfacing terminals to the host VAX minicomputers in the TSRV
system. However, during 1990 this data bus became a critical link
in two highly successful flight research programs--the Data Link
and the Differential Global Positioning Satellite (DGPS)
experiments. Up to four separate RS-232 links operating
simultaneously were required for support during these flight test
efforts with the major RS-232 subsystem in both programs being a
Packet Radio link used for ground to air data transfer.

For support of the TSRV windshear detection flight program,
significant real-time use of RS-232 busses for experiment-critical
data will be required. The same Packet Radio system mentioned
above will be used for data uplink in the Terminal Doppler Weather
Radar (TDWR) flight tests. Also, the windshear infrared detector
requires an RS-232 data bus for interface to airborne data
recording and display systems.

This extensive use of RS-232 data busses requires generation of
task-specific software for configuration of computer interfaces to
a number of peripherals, both programmable and non-programmable.
Serial communication hardware and firmware design variations among
these peripherals have presented difficulties in implementing the
required interfaces. For example some units, on initial power-up,
transmit character strings containing bytes that can be interpreted
as control codes by another connected unit. Troublesome results
such as communication hang-up and mode changes often result. These
extraneous characters can be difficult to identify using only the
connected systems, especially if normal communication functions
have been disrupted. However, once such problems are identified,
software can usually be readily configured to avoid conflicts.

Thus, for efficient development of the TSRV requirements, RS-232
bus diagnostic and monitoring aids are needed for troubleshooting
and debugging. This document describes one such troubleshooting
tool which was developed to utilize the serial communication
features of IBM PC's and compatibles, including the TSRV Grid
laptops. The resulting system can function as a simultaneous on-
line monitor for two RS-232 busses with input from each bus being
displayed in a separate window on a PC screen. A third window
displays data from a local device such as the keyboard or a disk

file. Text or binary display of the received data can be
selected. In the binary mode all received data bytes, printable
or not, are displayed in Hex form permitting detection of any
potentially troublesome control characters which might be missed
by normal text display. Log files to save (in binary form) all
received bytes and instantaneous screen capture to a file are
online selectable features. Also, transmission from a local
keyboard or disk file to either or both monitored ports is
selectable online in case output of test or configuration
information is needed.

o =

2

2.0 LIST OF ABBREVIATIONS

ALT

ARINC

ASCII

ATOPSPO

AX

AH

AL

BIN

BIOS

BIT

BYTE

BX

BH

BL

C

CHAR

COM

CPU

CR

CRLF

CX

CL

DATAC

DGPS

Alternate Key on PC Keyboard

Aeronautical Radio, Inc.

American Standard Code for Information

Interchange

Advanced Transport Operating Systems

Program Office

General Purpose 8086 Family 16-Bit CPU Register

Upper Eight Bits of AX

Lower Eight Bits of AX

Binary

Basic Input/Output System

Binary Digit, One or Zero

Eight Bit Data Unit

General Purpose 8086 Family 16-Bit CPU Register

Upper Eight Bits of BX

Lower Eight Bits of BX

Name of a Computer Programming Language

Character

Communications Port of PC

Central Processor Unit

Carriage Return

Carriage Return/Line Feed

General Purpose 8086 Family 16-Bit CPU Register

Lower Eight Bits of CX

Digital Autonomous Access Terminal Communication

Differential Global Positioning Satellite

DMA

DOS

DX

FI-FI0

FDX

FIFO

HDX

Hex

IBM

INOP

INT NO

I/O

ISR

MS-DOS

NASA

PC

RS-232

TDWR

TSRV

XMIT

Direct Memory Access

Disk Operating System

General Purpose 8086 Family 16-Bit CPU Register

PC Function Keys

Full Duplex

First-In, First-Out

Half Duplex

Hexadecimal Number

International Business Machines

Inoperative

Interrupt Number

Input/Output

Interrupt Service Routi_

Microsoft Disk Operating System

National Aeronautics and Space Administration

Personal Computer

Serial Communication Standard

Terminal Doppler Weather Radar

Transport Systems Research Vehicle

Transmit

3.0 USER'S GUIDE

Documentation describing the functions and use of the various
features of the RS-232 bus monitor system are contained in this
section.

3.1 General DescriPtion and Initialization

The RS-232 monitor system consists of an MS-DOS executable

program, with filename "DUALCOM.EXE", written to run on MS-DOS

computers. Figure 1 illustrates the screen appearance after the

system is initialized by entering that filename from the DOS

prompt. Three distinct windows will appear on the screen

separated by horizontal reverse video bars containing various

messages to indicate the status of the various operational modes.

Identification information for each message is also shown in

figure i. The top window displays input from COM i, the center

window displays input from COM 2, and the lower window displays

local input from the keyboard or a disk file.

As part of initial loading, the software checks internally for

availability of communication port hardware and initializes the

first two ports found. In the example of figure I, it is seen

from messages at the left of the top and center bars that hardware

for communication ports one and two (COM 1 and COM 2) were found.

Immediately to the right of the port indications, messages appear

showing the communication parameters for each port. The default

values of these parameters are contained in program code but

online changes can be easily made for matching the parameters to

those of devices connected to the PC serial ports. Port

initialization also includes setup for interrupt driven two-way

data communication. Techniques used to determine port

availability and setup for interrupt driven operation are

discussed in later sections of this document.

In normal operation, the PC will contain one or two serial

communication ports connected to external RS-232 data lines. An

example application is illustrated in Figure 2 wherein the receive

lines of two PC serial ports are connected in parallel with the

transmit and receive lines of an RS-232 bus which is actively

passing data between two devices. The system is then monitoring

and displaying data simultaneously from each line in separate

windows. This creates a real time monitor of both input and

output data for each operating RS-232 device. Figure 3

illustrates the PC screen for this case.

3.2 Communication Port Hardware Variations

Fai!ure to find pc hardware communication ports at startup will be

indicated, by messages displayed on the screen. An example of this

is shQwnE!D figure 4 where COM 2 hardware was not found, and the

message "COM 2 INOP" appears at the left in the center bar where

5

port identification is normally displayed. The COM 2 window will

then remain blank throughout the session.

3.3 Mode Selection Features

Selection and use of all operational modes are discussed in the

following subsections. Keyboard entries for mode selection are

shown in the help screen which, as shown in the center of the

lower bar in figure i, is displayed by entering ALT-Z (ALT and "Z"

keys simultaneously). Figure 6 illustrates the help screen

display wherein a window containing a help list is superimposed on

the PC screen. In the following discussion all specified keyboard

selection combinations, such as ALT-FI, means simultaneously

pressing the specified keys.

3.3.1 Log File Toggle

Log files for saving received data are toggled on and off by entry

of ALT-FI from the keyboard. Activating this feature will result

in opening two files in the default directory for separate storage

of data bytes received from each communication port. The

filenames are "COMIIN.DAT" and COM2IN.DAT". Storage is in binary

form for exact preservation of all received bytes, printable or

not. The log file status is indicated on the screen by the

message at the right of the lower reverse video bar.

Normal program exit will result in proper closing of all open

files after associated nonempty buffers are flushed. However, the

monitor program uses its own intermediate 512-byte buffer to

collect data for file storage. When this buffer fills, the

appropriate file is opened, the buffer contents are written to it,

and the file is once again closed. Thus, no more than the last

512 bytes of saved data from any session should be lost by

improperly closed files; i.e. abnormal termination of program.

Once log files are created, all saved data will be appended to

them. With each program startup, a date and time stamp is placed

in each file to aid in correlation of operating sessions with

various portions of appended files.

Keyboard entries displayed in the lower window are not stored in a

file since the prime purpose of this program is accurate detection

and storage of input data from the RS-232 lines it monitors.

3.3.2 Full/Half Duplex Mode

This mode, which determines whether keyboard entries are reflected

on the screen, is toggled on and off by entering ALT-F3 from the

keyboard. Half duplex (HDX) results in local screen reflection of

keyboard entries while full duplex (FDX) does not. Normally full

duplex mode is used when the remote system echoes locally

transmitted keyboard entries which are then displayed upon return.

Use of half duplex in that case will result in double display of

6

keyboard entries. Full duplex will almost never be applicable for

this monitor program.

3.3.3

Entry of ALT-X from the keyboard executes normal program

termination. A message will appear on the screen asking the user

to confirm the request for exit. Entering upper or lower case "Y"

or "RETURN" will result in exit to DOS, and the ESCAPE key or "N"

(upper or lower case) will result in return to normal program

operation. Before returning to DOS, the program will flush any

buffers containing data for file saving and close all open files.

Normal program termination will also reset interrupt vectors and

communication port hardware to the configuration found at startup.

3.3.4 Carriage Return/Line Fe_d Toggle

This mode, controlled by entry of ALT-F3, determines whether a

line feed (0A Hex) is appended in the screen display when the

program receives a carriage return (0D HEX). Its setting affects

all three windows. If a carriage return is displayed without a

line feed, each new line will be written over the previous one

resulting in display of only the last line received. Real time

visual observation of displayed information is thus difficult or

impossible. Appending the new line character to the carriage

return will move all displayed information up one row before

printing another line, thus preserving previous information until

scrolling past the top of a window occurs.

If the incoming data stream already contains a new line character

with each carriage return, then local appending will result in

double spacing on the screen.

3.3.5 Moving the Cursor Among Screen Windows

Keyboard entry of ALT-W will move the cursor to another of the

three screen windows. Repeated entry of this key combination will

cycle the cursor position through all windows in turn. This

feature can be useful for clearing the contents of a selected

window, a feature described in the next subsection. Cursor

positioning to print input data from a serial port or local device

will not be affected by this entry. Automatic window positioning

of the cursor for display of received data is done by program
software based on the data source.

3.3.6 Clearing the Window Containing the Cursor

Pressing ALT-C will clear the contents of the window containing

the cursor. Use of this feature with the cursor cycling described

above will permit total screen clearing.

7

3.3.7 Transmission Modes

The primary purpose of this system is line monitoring which, as

illustrated in figure 2, does not include hardware connection of

the RS-232 transmit lines from the monitoring PC. For increased

versatility, however, transmit modes are allowed and are online

selectable from the keyboard. As shown in figures i, 3, 4, and 5,

transmit status is indicated by the "XMIT ON" or "XMIT OFF"

messages in the right center of the COM 1 and COM 2 status bars.

Entry of ALT-F2 controls the state of this mode which is

individually selectable for each communication port allowing

locally entered keyboard data to be transmitted to either,

neither, or both ports. Repeated entry of ALT-F2 will cycle

through this mode for both ports and the messages will change to

properly indicate the status.

Ability to transmit from the monitoring system can be convenient

if test or configuration data needs to be sent to a device being

monitored. Figure 7 shows an example implementation which has

been used for TSRV packet radio operations. The hardware

switching arrangement permits toggling the receive line of each

RS-232 device between its normal operating data source and the

transmit line of the monitoring PC. This operating mode

eliminates any requirement for hardware or software

reconfiguration if new control parameters need to be sent to

either RS-232 device. The default state of the transmit mode is

off and care should always be exercised in its use to prevent

parallel connection of two transmitters to the same receiver.

3.3.8 Upload of a File

A typical use of the transmit mode described in section 3.3.7 is

sending a file containing new configuration parameters to a device

such as a packet radio modem. Pressing the PAGE UP key will

prompt the user for a filename to send. The filename must then be

entered complete with MS-DOS path information. Only ASCII

(American Standard Code for Information Interchange) files can be

used. The ENTER key starts file transfer and a beep will signal

its completion. Transmitted data characters scroll past in the

lower screen window if half duplex is active.

3.3.9 Character or Binary Display Mode

By default all received data bytes are printed on the screen in

normal character (text) mode. Figures 3 and 4 illustrate the

resulting screen appearance. For reliable detection and

identification of non-printable control characters, however, a

binary display mode is available in which the Hex representation

of all received bytes will be written to the screen. Figure 5

illustrates the resulting screen for this mode with 16 bytes

displayed on each line. The right side of the display contains

the normal text representation of all printable bytes with a

period appearing for any that are non-printable.

8

The character/binary display mode can be individually toggled for
each of the two upper windows. As shown by the help screen in
figure 6, this mode for the upper and center windows is controlled
by ALT-F9 and ALT-FI0 respectively. Status of this mode is

indicated by the messages "CHAR" or "BIN" at the right of the two

upper bars. Binary display mode does not exist for the lower

window.

3.3.10 Communication Port Parameter Select

Capability for online communication parameter selection and change

are important features of any versatile serial communication

program. This monitor system permits individual configuration of

the ports associated with each of the two upper windows. As can

be seen from the help screen in Figure 6, this feature in the

upper and center windows is controlled by ALT-F7 and ALT-F8

respectively

Figure 8 illustrates the screen appearance when online parameter

selection is requested. Two small menu windows are superimposed
on the screen. One contains the baud rate menu while the other

contains a menu of parity, word length, and stop bit parameters.

Each menu window identifies the port in question and lists the

currently active parameter value. When these menus are first

displayed, the blinking cursor appears at the "SELECTION" prompt

in the baud rate window indicating that this parameter is to be

selected first. Valid selections are a menu number or carriage

return to retain the present value. After a valid baud rate

selection, the cursor moves to the other menu window for similar

selection of remaining parameters. Then the menu windows

disappear, the ports are reconfigured per the selections, and the

parameter messages at the left of the two upper bars reflect the
new values.

3.3.11' Saving Screen Contents to a File

Instantaneous snapshots of screen contents can be saved to a file

by entry of ALT-G from the keyboard. A file "SCREEN.DAT" is

created in the default directory for this storage and each captured

screen is appended to this file. With each screen capture, the

file is opened, screen data are written to it, and it is closed.

Thus, abnormal program termination should result in loss of no

captured screen data.

4.0 PROGRAMMING TECHNIQUES AND ALGORITHMS

Section 4.0 contains descriptions of many of the programming

techniques and algorithms used to develop the RS-232 bus monitor

system. Tutorial discussions of C and assembly language

programming are not included, but numerous references to

publications containing this type of information are provided.

4.1 Gener_l Description

The RS-232 monitor development effort consisted in large part of

communication software development. Mixed language programming

using Turbo C and Turbo Assembler for MS-DOS, both products of

Borland International, was used. Prominent programming tasks

included initialization of IBM PC serial communication hardware

for interrupt driven data transfer, interrupt vector redirection,

direct writing to video memory for rapid screen display, detection

and handling of keyboard input, and file handling.

Figures 9 and i0 are flowcharts outlining total program operation•

Functions for initial setup and keyboard input handling are shown

in figure 9, and actions dealing with serial port input are shown

in figure I0. Discussions in the following sections will refer to

the labeled symbols shown in these two figures•

4.2 Check for Serial Communication Port Hardware

A test for availability of serial port hardware, element 9A in

figure 9, is the first setup operation performed. During boot-

up, MS-DOS and the IBM BIOS (Basic Input/Output System) check the

status of hardware peripheral configuration and accordingly

initialize memory at specified segment and offset locations.

References 3, 6, and 9 are examples of a number of publications

which provide information on the segmented architecture and

mapping of IBM PC memory. Information in these publications shows

serial communication port status information appearing at offset

zero of segment 0040 Hex, or absolute memory location 400000 Hex.

The first four 16-bit locations starting at this memory cell

contain I/O (Input/Output) port addresses, beginning with COM i,

for all communication ports found by the BIOS at boot-up.

To retrieve the required port information, a C language pointer to

an integer data type (16 bit word in Turbo C) is defined and

initialized to point to memory location 400000 Hex. The following

statement can be used to define "COM IO" as such a pointer.

#define COM IO ((unsigned int far *) (0x400000))

Pointers are, in fact, addresses. When locked to specific

locations, pointers should be declared as "far" to ensure

inclusion of both segment and offset address components• This

allows the selected location to be accessed no matter where it

resides in physical memory (See reference 1) Using "COM IO"

the contents of the required four 16-bit memory elements can be

acquired and placed into an array with the following C code:

index = 0;

while(index <= 3)

cm_port[index] = *(COM_IO + index++);

Here "index" must be declared as an integer and "cm_port[4]" must

be declared as an array of unsigned integers. The expression

I0

*(COM IO + index) means fetch the contents of the 16-bit location

pointed to by (COM_IO + index).

The notation "index++" in the while loop causes the integer

variable "index" to be incremented after each of four iterations.

This, in effect, increments an integer pointer which causes a 16-

bit value to be read from each of four successive locations. Each

16-bit value read is a port address which is placed in successive

elements of the array "cm_port". Array elements must then be

checked against I/O addresses in the following table to determine

which ports were found.

Port I/O Address

COM i: 03F8 Hex

COM 2: 02F8 Hex

COM 3: 03E8 Hex

COM 4: 02E8 Hex

AS depicted in elements 9B and 9E of figure 9, checks are first

made in turn for COM 1 and COM 3. If COM 1 is located then no

check is made for COM 3 since these ports, while using different

I/O port addresses, share a common interrupt number and the

monitor program will not resolve the resulting conflicts. If

either is found, it is initialized (elements 9C and 9F) and a flag

is set to so indicate (element 9D).

The same procedures are then performed to check for the existence

of COM 2 or COM 4, actions represented by elements 9G, 9J, 9H, and

9L in figure 9. Again only the first of these two ports found

will be used because they also share a common interrupt number.

Element 9I shows a flag being set if either of these two ports

have been initialized for use.

All suppor£ed ports found will have been setup for use after

completion of the action represented by element 9I. Possibilities

are :

i. Any one of the four ports
2. C f_hd COM 2 _
3. COM 1 and COM 4

4. COM 2 and COM 3

5. c0M 3 and COM 4

If no ports at all are detected, exit to DOS will occur as shown

in elements 9K and 9Y.

4.3 Communication Port Initialization

Initialization of the communication ports selected for use is

represented by elements 9C, 9F, 9H, and 9L of figure 9. Tasks

involved are setting communication parameters, changing interrupt

II

vectors, and writing interrupt service routines (ISR's) specific

to program requirements.

4.3.1 Interrupt Interception and Redirection

Occurrence of either a hardware or software interrupt in the IBM

PC results in immediate redirection of processing to the address

of a corresponding ISR. Resulting action will be determined by

processor instructions placed in the ISR by the programmer. All

ISR addresses for the IBM PC are contained in interrupt vector

tables which comprise the lowest 1024 memory locations. Each

interrupt vector consists of a four-byte block with each block

having an associated interrupt number, or type, starting at zero

and continuing through 255.

Application programs can intercept an interrupt by changing the

contents of its vector thus directing processing to a different

address when the interrupt occurs. This new address must contain

an ISR written by the programmer to perform the specific actions

desired. Internal MS-DOS software services accessible via

assembly instructions are provided for this vector redirection;

but, most C compilers now contain higher level functions to

accomplish this. In Turbo C the interrupt vector redirection

functions are "getvect()" and "setvect()" which are used as

follows:

entry_handler = getvect(INT_NO);
Fetch the address of the handler for interrupt type INT__NO

and place it into the variable "entry__handler". This

permits reset at program exit.

setvect(INT_NO, prog_handler);

Replace the interrupt vector for INT_NO with the

address of the function "prog_handler" which points to a

user-written ISR.

The variable INT NO represents the number associated with the

hardware or software interrupt being redirected. These Turbo C

library functions were used in the monitor program described

herein to intercept hardware interrupt numbers 0C Hex and 0B Hex.

These numbers correspond to COM 1 and COM 2 interrupts

respectively from the PC communication device, an 8250 serial
interface controller. Reference 6 contains complete technical

data for the 8250 serial controller including hardware register

structure, associated interrupt types, and control bits required

for register configuration

4.3.2 Communication Parameter Setup

Communication parameter setup is accomplished by writing control

bits into the various eight-bit registers of the 8250 serial

controller. Parameters requiring attention are baud rate (bits

per second of data to be transferred through the port), number of

12

stop bits transmitted after each data byte, parity (even, odd, or
none), and word length for each byte (seven or eight bits).
Values of 1200 baud, no parity, one stop bit, and eight bit word
length are default settings for initial boot-up of the monitor
program. Other parameter configurations are available for online
selection and are listed in the menus shown in figure 8. The
monitor program contains tables of eight-bit binary values
required to configure the 8250 registers for each of these
supported configurations. Software functions obtain proper binary
values for required register configuration by using menu
selections from figure 8 as pointers into these tables.

Reference 6 contains a technical description of the 8250 register
structure and control bit configurations required for all
supported functions.

At startup, the existent contents of the 8250 registers are read
and stored before writing any new setup information to them.
These entry parameters are then used at program exit to restore
each port status to its original condition.

After completion of communication port setup, program flow will
have progressed through element 9L of figure 9.

4.4 Screen Layout Implementation

The final setup task involves creation of the screen layout

illustrated in figure I and represented by element 9N in figure 9.

Screen configuration is accomplished by writing text characters

directly into video memory, a technique which enhances program

performance by very rapidly creating a screen display.

4.4.1 Identification of Video Memory Locations

Before any direct memory writing is done, proper memory locations

must be identified to prevent overwriting critical system
information. Determination of the location of the active video

page is required since some graphics hardware adapters can

simultaneously store several screens, or pages, of video memory.

Use of Read-Only Memory (ROM) Basic Input/Output System (BIOS)

functions is an effective method for obtaining current values of

video mode and video page which can, in turn, be used to identify

the current video memory starting location for the system

currently in use. Reference 2 provides a description of this

technique.

An integer pointer initialized to the starting location of current

video memory can then be used to write directly into memory cells

corresponding to any row and column screen position. A pointer to

an integer (16 bits) must be used, since two bytes are required to

control the display at each screen position, one byte being the

character to print and the other its display attribute. Examples

of attributes for a monochrome display are normal video (white on

13

black), reverse video (black on white), and blinking video. A 25
row by 80 column text screen will contain two thousand character
locations. Thus two thousand integer values in memory (4K bytes)
are required for a full screen of text display.

4.4.2 Accessing Video Memory

A pointer variable "vidpolnter" for use in selecting video memory

locations can be declared in the following manner:

unsigned int far *vidpointer;

As was the case in section 4.2 above, declaration of a "far"

pointer is needed to allow access to locations anywhere in

physical memory. The value assigned to this pointer will be

determined by the results of ROM BIOS checks for graphics hardware

configuration (See reference 2.).

A general C function of the following form was written for

directly writing one or more identical characters to video memory:

I. void vid write(char ch, unsigned char attr,

int first_cell, int cell_ct)

2. int v off, last cell; unsigned int vid_cell;

3. last_cell = first_cell + cell_ct;

4. vid_cell = bytes_to_int(attr, ch);

5. for(v off = first cell; v off < last cell; v_off++);

6. *_vidpointer _ v_off) -= vid_cell7

7. return;

} /* End of Function /*

Statement 1 defines the function and the parameters that must be

passed to it. A variable "ch" is the character to be written to

video memory and thus immediately displayed on the screen. The

display attribute is passed to the function through the parameter

"attr". Another parameter "first_cell" is the starting location,

offset from the start of video text memory, where writing is to

occur. The value "cell ct" is the number of consecutive locations

into which the characte_ is to be written. Statement 4 combines

the two byte values, "ch" and "attr", into the unsigned integer

"vid cell" for fitting into a 16-bit video memory data element.

Another function "bytes to int()" is called to form the 16-bit

value. Statements 5 and 6 constitute a loop to actually place the

variable "vid cell" into the requested number of consecutive video

memory locati_ns. The expression in statement 6 means place the

value of "vid cell" into the memory location pointed to by

"(vidpointer _ v_off)" where the integer "v_off" is an offset from

14

the beginning location of video text memory. Looping with "v_off"
being incremented in each iteration will result in the appearance
of a string of identical characters on the screen.

4.4.3 Printing Reverse Video Bars and Status Messages

Passing a space character (20 Hex) to the function "vid write()"
with reverse video attribute and a cell count of 80 is used to

produce each of the three horizontal bars shown in figure i.

Status messages in the reverse video bars are also produced by

writing character strings directly into video memory. A general C

function of the following form was written for this purpose:

I. void string to vmem(int vm_off, unsigned char attr,

char *c_ptr)

(
2. while(*(c_ptr) != '\0')

3. *(vidpointer + vm off++) =

bytes to int(attr, *c_ptr++) ;

4. return;

/* End of Function */

This function is similar to the function "vid write()" shown in

the previous section except that a "while" loop replaces the "for"

loop. A pointer to the character string to be written is passed

to this function through the variable "char *c_ptr" in statement

I. A single display attribute applies to all characters in the

string and is given to the function by the expression "unsigned

char attr" in statement I. Each pass through the while loop in

statements 2 and 3 increments both the video memory offset and the

string's character position. Also, with each pass the character

and attribute bytes are combined into a 16-bit word and written

into the cell pointed to by "*(vidpointer + vm_off)"

An example definition of a string constant that can be passed to

this function is:

#define PORT ID STR "COMM i";

The name of the string, "PORT ID STR", is a pointer to its first

character. Printing this string on the screen is accomplished by

passing its name ("PORT ID STR"), its desired attribute, and its

starting video memory offset to the above function. A video

memory offset value corresponding to a row and column position on

the screen is obtained by multiplying the row number by 80 and

adding the column number.

All the messages shown in figure 1 are defined as string constants

and printed to the screen using the above-described function

"string to vmem()" Default messages are printed at boot-up, but

15

online changes are made in response to the keyboard entries listed

in the help screen of figure 6.

4.5 Main Program Operation

After screen initialization, element 90 of figure 9 has been

reached and the monitor program enters a loop of indefinite

duration which can be terminated by entry of ALT-X by the user.

Program looping repeatedly checks, in turn, the keyboard buffer

and two buffers configured to separately collect input bytes from

each communication port. Various resulting actions occur as a

function of program operational modes and values of the data bytes

fetched from these sources.

4.5.1 Checking for Keyboard Entry

Element 90 in figure 9 represents the monitor program's check for

any keyboard entries which would place characters in the PC's

internal keyboard buffer. The Turbo C library function "kbhit()"

provides a convenient means of fetching a waiting keyboard entry.

An example of its use is:

int key_in;
if(kbhit())

key_in = getch();
else

{ No keyboard entry waiting. Execute next program

statement. }

If a key has been pressed, its value will be placed in the

variable "key_in". Otherwise, program flow continues to the next

instructions which check the buffers holding any data received

from the serial ports, (operations illustrated in figure 10 and

described later.)

4.5.2 Keyboard Mode Control Entries

Continuing with the flow chart in figure 9, it is seen that if

keyboard activity is found then a check is made to determine

whether it is one of the mode control functions listed in the help

screen of figure 6. If so, and if ALT-X was entered, the program
will terminate with normal exit to DOS. Flow chart elements 9P,

9Q, and 9Z illustrate this path: Normal exit will result in

closing all open files and resetting both the interrupt and

communicatlon parameter status of each serial port to-the _
conditi6ns _found at program start-up. All the necessary entry

information was saved during the port initialization procedu-r_es -

described earlier in section 4.3.2. Other appropriate mode control

actions, such as opening log files or changing communication

parameters, will be performed if the requested mode Contr61-was not

the exlt Command_

16

Figures 6 and 8 illustrate mode control actions which utilize menu

windows superimposed on the screen. Each of these menus is

displayed by writing an array of string constants to video memory.

The following baud rate selection menu is an example of such an

array of string constants:

char *baud ist[ll] =

{ " BAUD RATE SELECT ",

" <I> 300 " f

" <2> 1200 "

" _ <3> 2400 ",
" <4> 4800 "

" <5> 9600 "

" <6> 19200 "

" <7> 38400 "
11 11

q

" SELECTION " } ;

Each array element is a string constant which can be written to

video memory through a call to the function "string. to vmem()"

described earlier in section 4.4. A loop of Ii iterations with

each iteration calling this function will then display the entire

. table one string at a time. With each iteration, the offset into

video memory for writing is increased by 80 integer elements to

place each successive string constant in the same column of a new

line. This screen writing method is very fast and results in a

menu window that pops up instantly with keyboard selection.

Underlying screen contents must not be destroyed by any

superimposed menu window. A convenient method of accomplishing

this task is reading the contents of the screen's video memory

into a buffer, displaying a menu such as shown above, making a

menu selection, and then writing the saved buffer back into video

memory. Restoring the screen from the buffer will overwrite and

thus erase the temporary menu. Turbo C compiler packages contain

library functions "gettext()" and "puttext()" to respectively

capture and restore the screen contents using a four kilobyte

buffer defined by the _programmer.

Capture of the screen contents to a file also involves reading the

contents of video memory. When this operation is activated, by

entry of ALT-G from the keyboard, 2000 integer locations are read

beginning with the location pointed to by "vidpointer" (See

subsection 4.4.2.). Then the attribute byte of each resulting

integer is discarded and the remaining character byte is written

into the file ,SCREEN.DAT, in the default directory. Thus, the

file will contain 0nly printable ASCII characters.

Reference 1 contains detailed treatments of file handling and all

other programming techniques used to implement the actions
described in this subsection.

17

4.5.3 Keyboard Entries Not Requiring Mode Control Actions

Elements 9S, 9T, 9U, and 9V of figure 9 illustrate the path taken

by the monitor program if the keyboard entry found in element 90

does not require a mode control function. If half duplex is

active, the keyboard entry will be printed to the screen in the

lower window as shown in figures i, 4, and 5. Programming

techniques used for this screen printing operation are described

in subsection 4.5.3.1 below.

Finally the need for transmission of the keyboard entry to one or

both communication ports is checked as shown in element 9U of figure

9. If transmit mode is active for either or both ports, the

keyboard entry is sent out accordingly using methods described in

subsection 4.5.3.2 below. If transmit is not active, program flow

proceeds to elements 9W and 9X for checking of the communication

ports for any waiting input.

4.5.3.1 Printing to the Screen

For enhanced performance, low-level ROM BIOS functions called by

assembly language routines are used both to position the cursor to

the screen position where a character is to be printed and to

actually print the character. As described in detail in references

2 and 4, BIOS interrupt I0 Hex provides a number of video services

including cursor positioning, setting the cursor size, scrolling up

or down in a window, clearing a screen window, obtaining the

current video mode, and screen printing.

Each of the three screen windows is defined by selecting row and

column values for its corners. The first character printed in a

window will be placed at the lower left corner, or the zero window

position. Current position for writing the next character in each

window is maintained by a counter which is incremented after every

write operation. A flag, unique to each of the three input data

sources, directs each screen write operation to the correct

window.

An example assembly language routine to position the cursor at row

I0 and column 15 follows:

CUR POSITION

MOV DH,10

MOV DL,15

MOV AH,2

INT 10H

RET

CUR POSITION

PROC NEAR Name of Assembly Procedure

,Row number in DH register

,Column number in DL register

,BIOS cursor position service

,Transfer control to BIOS

,Return to calling routine

ENDP End of Assembly Procedure

All calls to the BIOS follow this general method. Register AH

must contain the BIOS service number, in this case 2, associated

with the desired task. Printing a character to the screen at the

18

present cursor position using BIOS interrupt I0 Hex can be done
with the following procedure:

SCREENPRINT PROC
m m

PUSH BX

PUSH CX

MOV AH, 9

MOV BH,VID PAGE

MOV BL, VID ATTR

MOV CX, I

INT 10H

POP CX

POP BX

RET

SCREEN PRINT ENDP

NEAR ;Name of Assembly Procedure

;Save BX register contents

;Save CX register contents

;BIOS screen print service.

;Current video page.

;Current display attribute.

;Number of characters to print

;Transfer control to BIOS.

;Restore CX register contents

;Restore BX register contents

;Return to calling routine.

;End of Assembly Procedure

Notice here that register AH contains the value nine which is the

screen-print service for BIOS interrupt i0 Hex. The current video

page for use in register BH above can be determined with another

call to BIOS interrupt i0 Hex using service number 15 in register

AH. Examples of additional uses made by the RS-232 monitor

program of BIOS interrupt I0 Hex include completely clearing a

window and scrolling up one line in a window when printing reaches

the maximum right screen column. Most assembly procedures such as

that listed above are written to be called from C functions.

Reference 4 contains complete descriptions of all the Central

Processor Unit (CPU) registers in the IBM PC as well as technical

descriptions and example uses of all DOS and BIOS interrupt
services.

4.5.3.2 Transmission to COM Ports

Transmission of a byte to a COM port is accomplished by writing

the byte to the data register of the 8250 serial communication

device. The Turbo C library function "outportb()" can be used for

this task. Use of this function takes the form:

char out_byte;

if(8250_XMIT_BUFFER_EMPTY)

outportb(out__byte, COM IO ADDRESS);

In this example, the parameter "COM IO ADDRESS" will be one of the

I/O port addresses listed in the table of subsection 4.2. The

variable "out_byte" is the value of the byte to be transmitted.

Before sending any output byte to a COM port, a status check of

the transmit buffer of the 8250 serial device is needed. A

nonempty buffer indicates that a previous transmission is not

complete, and data loss will likely occur if a new byte is

written. This test consists of checking a bit in one of the 8250

19

registers, a task performed by the second line of the above

example.

Technical data needed for all 8250 register programming used in

this subsection are provided in reference 6. That reference also

describes and illustrates the I/O programming methods used in the

above example.

4.5.4 Communication Port Input Handling

Any data byte received by the 8250 serial device at either COM

port will generate a hardware interrupt which immediately calls a

corresponding ISR. As its first step, the ISR reads the input

byte from the 8250 data register, an operation which can be

conveniently performed using the Turbo C library function

"inportb()". An example use of this function is:

char in_byte;

in_byte = inportb(COM IO ADDRESS);

Here the variable "in_byte" assumes the value of a byte fetched

from the port with I/O address "COM IO ADDRESS" which will be one

of the addresses listed in the table of subsection 4.2 above.

Next, the ISR will place "in_byte" into a software circular First-

in, First-out (FIFO) buffer, the functioning of which is

illustrated in figure II and described below.

4.5.4.1 Software First I_ First Out {FIFO} Circular _uffer

A circular FIFO buffer is created in software and used to

temporarily store input data bytes received from an interrupt

driven serial communication port. Reference 6 contains a detailed

description of this commonly used buffering technique.

As can be seen from figure II the buffer functions in conjunction

with two independent operations, one to deposit data and another

to retrieve it. In the monitor program described herein, the ISR,

which is activated when a byte is received from a communication

port, is the buffer's writing operation; while the tasks depicted

by elements 10A and 10C in figure i0 perform data retrieval

functions. Separate input and output pointer variables (see

figure II) control buffer locations where data are written into

and read from, respectively. Both these pointers are set to zero

at program startup and, thus, initially point to the bottom of the

buffer. An operation depositing a data byte will write it into

the cell pointed to by the input pointer. Then the input pointer

variable must be incremented to select the next cell available for

writing. In similar fashion, a routine fetching a byte will read

it from the cell pointed to by the output pointer and then

increment that pointer variable to select the next cell from which

reading must occur. Both pointers will eventually reach the

buffer's top at which time they are reset to zero to once again

point to the bottom. Thus, the buffer is circular in nature.

2O

Read and write operations may occur totally independently, but

both begin at the bottom and separately increment pointers

specific to each operation. Therefore, cells will be read from in

the same order as they were written into, yielding a FIFO buffer.

Testing for COM port input, an operation depicted by element 10A

of figure 10, consists of checking the FIFO buffer for any waiting

bytes. This is accomplished by comparing the values of the input

and output buffer pointers. If the pointers are equal, they point

to the same location; and, thus, no byte is waiting to be read.

This indicates that read operations have reached the last buffer

location which was written into. However, if the input pointer is

greater than the output pointer, then one or more bytes are
available for retrieval.

4.5.5 No Communication Port Input Waiting

Tests represented by elements 10A and 10C of figure i0 fail if no

bytes are available in the FIFO buffer. When this happens for both

COM ports, program flow will once again loop back to element 90 of

figure 9 and perform another test for keyboard entry.

4.5.6 Byte Waiting in COM 1 Input Buffer

When a waiting byte received from COM port 1 is fetched from the

input buffer, a check is made in element 10H to determine the mode

for printing it on the screen, if normal character mode is

active, screen positioning and printing is accomplished by methods

described in subsection 4.5.3._1 above. If binary display mode is

active, then a hexadecimal representation of the byte is displayed

by separating it into two characters which are then individually

printed. This binary mode, which is described in the following

subsection, is useful for display of the actual bit structure of

non-printable bytes which would appear either as a graphic symbol

or not at all in the character display mode. An example of this

display mode is shown in figure 5.

4.5.6.1 Hez_decimal Display of Received Bytes

A commonly used algorithm for display of bytes in hexadecimal form

is described in detail in reference 8. A general description of

its specific use in the monitor program described herein is

contained in the following paragraphs.

Every eight-bit byte can be represented in hexadecimal form by two

printable ASCII characters. Individual printing of these two

characters will result in display of the actual bit structure of

the byte. This individual printing begins by placing each

character into the lower halves of two separate bytes. For

example, the byte with hexadecimal value BF is not printable and

will not display an alphanumeric character when processed using

normal character video. However, the two characters can be

individually written as such if they are placed into separate

21

bytes with values adjusted to correspond to "B" and "F" in the
ASCII table.

A new byte resulting from a four bit right shift of the byte BF
Hex will have the value 0B Hex. This isolates the most
significant character of the byte BF Hex. Also, a new byte
resulting from the logical AND of BF Hex and OF Hex will have the
value OF Hex, thus isolating the least significant character of
the byte BF Hex. However, additional adjustment to the values of
the two new bytes is required before their direct printing will
display the ASCII characters "B" and "F" This adjustment
consists of adding a constant to the bytes to make them equal to
the hexadecimal representation of the ASCII values of the
respective characters. Reference 8 presents an algorithm for
accomplishing this. It consists of adding 48 decimal to bytes
with values between zero and nine or adding 55 decimal to bytes
with values between "A" (I0 decimal) and "F" (15 decimal). In
the example discussed here (byte BF Hex), a value of 55 decimal
would be added to each of the two bytes 0B Hex and 0F Hex to yield
42 Hex and 46 Hex, respectively. Consultation of Reference 8 and
a standard ASCII table shows that normal character printing of
these last two bytes will result in display of "BF", the original
binary byte. Each final printable ASCII character is written to
the screen using the ROMBIOS method described in subsection
4.5.3.1 above.

On the right side of the binary display screen, as can be seen
from figure 5, character printing also occurs for any bytes that
are printable. A decimal is displayed in this section for any
that are non-printable. Thus, for binary display, the screen

window is divided into left and right sections with each received

byte being printed in a different format in each section.

4.5.7 Log File for Received Bytes _ _

Next a status check of the log file feature is made in the step

depicted by element 10J of figure I0. If the log file feature is

not active, COM Port 1 operations are complete for the current _

loop iteration. Program flow then proceeds to element 10C which

will trigger operations for COM Port 2 identical to those

described in subsections 4.5.5, 4.5.6, and 4.5.6.1 above.

Active log file status will result in each received byte being

initially placed into a local intermediate buffer (element 10M of

figure I0). This buffer, which is 512 bytes in size, is a

circular FIFO buffer very similar to that illustrated in figure /

ii. A buffer pointer is initially set to zero incremented with

each write operation. When the buffer's top is reached, the log _

file is openedand the contents of the buffer are read into it

beginning with the first buffer location written. Then the file

is closed and the buffer pointer is reset to zero. This permits

the file to remain closed for most of an operating session since

it needs to be open only when receiving the contents of a buffer.

22

Thus, any abnormal program termination should cause loss of at

most one full buffer (512 bytes) of saved data.

Log file handling operations for COM Port 1 are represented by

elements 10M, 10R, 10Q, and 10S of figure 10. High-level Turbo C

library functions, which are described in reference i, are used

for file handling.

4.5.8 Input from Communication Port 2

After log file operations for communication port 1 are completed,

the entire procedure described in subsections 4.5.5, 4.5.6,

4.5.6.1, and 4.5.7 above is repeated for COM Port 2. A separate

FIFO circular buffer, identical in operation to that described in

subsection 4.5.4.1, is used to collect incoming data bytes from

COM Port 2. Depending upon whether a byte is waiting and the log

file status, COM Port 2 operations will end with tasks depicted in

elements 10D, 10P, or 10T in figure I0. At this time program flow

will return to element 90 of figure 9 and begin another complete

iteration.

4.6 TSRV Grid Applications

Terminals for use with the TSRV VAX host computers now consist of

five Grid series 1530 laptop computers. These units, however, are

80386 based PC clones and are readily adaptable to numerous

additional applications. Compatibility of the Grid laptops with a

number of quality compiler and assembly development packages

permits many extended applications through software alone.

The TSRV Grid laptops were delivered with only one externally

accessible serial port. This is an acceptable configuration for

terminal use but is a significant limitation for extended RS-232

applications such as the dual port monitor system described in

this document. Added RS-232 capability was accomplished, however,

by implementing a second communication port through adaptation of

a Grid internal bus expansion feature. Development of low-level

communication software, configured for compatibility with bus

expansion hardware purchased from Grid, accomplished this task. A

Grid version of the dual port RS-232 bus monitor software was then

written which includes a user interface identical to that

described in section 3.0 of this document. Significant low-level

software differences exist between the Grid and normal PC versions

of the monitor program, but they are transparent to the user.

Development of this Grid serial expansion interface for more

general RS-232 applications is described in a separate technical

memorandum by the author.

5.0 CONCLUDING REMARKS

Increased use of RS-232 data busses in the TSRV system requires

continuous development of task-specific software for interfacing

23

peripherals which have different characteristics. Software

development and testing are aided by the ability for both off-

line determination of peripheral interface characteristics and

real-time monitoring of operating data busses. The RS-232 bus

monitor system described in this document represents a response to

these needs.

For increased versatility, the monitor system is configured for

general use on IBM PC clone computers including the Grid laptop

units in the TSRV system. Many specific features required for

adaptation of the program to different applications can be readily

implemented through software changes. Prominent features of the

monitor system include ability for simultaneous connection to two

data lines, ability for online control of transmission to these

connected lines, and the ability to display and record data from

both connected lines in binary form.

Three different configurations of the monitor program have been

used to support the TDWR portion of the TSRV windshear flights.

Specific TDWR applications include use in a Grid computer for in-

flight disk file recording of computed data, in-flight monitoring

of the packet radio data uplink, and interfacing of the TDWR data

sources to the TSRV ground-based, packet-radio system.

i
i

24
!
I

REFERENCES

i. Lafore, Robert: Turbo C Programming for the PC, Howard W.

Sams and Company, 1989.

2. Weiskamp, Keith: Advanced Turbo C Programming, Chapter 8,

Academic Press, Inc., 1988.

3. Young, Michael J.: Inside DOS: A Programmer's Guide,

Sybex, Inc., 1990

4. Duncan, Ray: Advanced MS-DOS, Microsoft Press, 1986.

5. Dettmann, Terry: Dos Programmer's Reference, Que

Corporation, 1989.

6. Barkakati, Nabajyoti: MS-DOS Developer's Guide, Second

Edition, Chapter 8, Howard W. Sams and Company, 1988.

7. Barkakati, Nabajyoti, The Waite Group's Turbo C Bible,

Howard W. Sams and Company, 1989.

8. Norton, Peter and Socha, John: Peter Norton's Assembly

Language Book for the IBM PC, Chapter 5, A Brady Book

published by Prentice Hall Press, 1986.

9. Holzner, Steven: Advanced Assembly Language on the IBM PC,

A Brady Book published by Prentice Hall Press, 1987.

25

t

LLJ I

C

I1,,..

/-

Ii

26

ccc_

/i
/ 'I

o OI

z

!tl,

_W

IJJI

l.Ul

27

d.

if)

t-
O

E
.m

F--
m

ft.

e_

I--

.u

U_

O
o

O

E
X

I11

_4

Bm

LL

28

c.
o

T-
O
U

E
o

u

f,_

c

>

c-

o

c

.c

c

c

L

o..

L

u

U

.

x o

"-I- c

u
c f'-

c

u
v

b_

0
_'- U

f,_.
0

_u_o
_o
u_,o _
(b C L.)

r-

>.. o

u_'- m

oo_,

E
c o3

F- I-- .-,

29

0
Z

0_
"i"

_f
0

0
0

O_

O_
O.

0

u

E
X
w

_f

r

u

× 5

' E-E :
-- _ _
_'° _
1"- I1_ "_ ._

O_ _0

0 U

0

_ _0
I I

o__

_o__
0_ _

_0__

_UO_O

z 1

c

.Q c'_ 0

_ L U
C_

cm o
Z 43 "

O_ _

0

I I I
I

_00<
_ _ _ 0

_ _ O_
_ _ _ 0

0 _ _ _

o__

__o
__o

liiiii

>

-_ j_

X
C_ L
-r

c I._

co
c _

0,1

o ¢-

o _'-
.c l--

_'c,i
>.
c. E

ogu
__ r'-

o
.Q

>'E

U

o o u'i

rn

_z5
EoN

I--- F- u_

0
U_

e-

m

n-
e-

Q.

121
ffl

II1

ID

lu

e-
o

e_

I11

x
I.!.!

t_

Jm

U..

3O

03

I:L
I/)

I::1

--I

ii-

31

i-t

Z
o
o

H

/
0

E
ffl
e-

I--

0

.m

I---

b:

LL

i

)

8

i_7

8

O.

C_

.N

I.L

3_
. _T ¸

® @, ,,= @

NO 2PORT INITIALIZE X2[

CHECK SERIAL PORTS
FOR INPUT. SEE

FIGURE 10.

NORMAL@

: -)IiT° °I

ENTRY TO
DUPLEX? SCREEN.

_YTO 1 OR !

[BOTH PORTS.
NO

Figure 9. Flow Chart of Program Operation, Setup And Keyboard Functions.

34

OCHECK COM 1 O
FOR WAITING

BYTE

I YES

BINARY DI

FILE BUFFER. "1_""
I I

1 FILE BUFFER _ BUFFER

POINTER- I "_L_ /

OPEN COM 1 LOG FILE, I
EMPTYBUFFERINTOIT.

CLOSE LOG FILE. _

T
®

q CHECK COM 2
FOR WAITING

BYTE

BYTE
FOUND?

NO

@
BINARY DISPLAY.
PRINT BYTE AS
2 CHARACTERS.

DISPLAY
MODE?

_ PRINT CHARACTER 1

TO SCREEN. I

WRITE BYTE TO

CIOMIB2uLFOCAL"

BUFFER _ 2 FILEBUFFER j

_ POINTER" 10_

I OPEN COM 2 LOG FILE, T"

EMPTY BUFFER INTO IT. I

o_o_,o_nL_ /
,91

CONTINUE LOOPING,

RETURN TO 9N,
IGURE 9 TO CHECK FOR I

KEYBOARD ENTRY. J

1'O ITEM ON, FIGURE 9.

Figure 10. Flow Chart of Program Operation, Serial Port Input Handling.

35

t

_ m m m

I -"

I -"

I m

I --"

I --"

I "--

I ----

I

I ----

I

I ----

I

I ----

I

I

I

I

I

I

I

I

I

I

I

I

I

I

t

m

mmm

m

mmmn

mm

mmmm

m

m

mm

..dmm

mmmm

m

mmmm

m

_um

mum

m mm m _ INN m m rmmm m m m_k

BUFFER TOP

I

I

I

I

I

I
BUFFER IN POINTER.

INCREMENT ON
WRITE.

BUFFER OUT POINTER.
INCREMENT ON

READ.

BUFFER BOTTOM

mm mmm m.m m mmm mm m m m m lure m m

Figure 11. Circular FIFO Buffer Technique Used to Collect
Input Bytes From Serial Ports.

36

Form Approved

REPORT DOCUMENTATION PAGE OMB NO. 0704-0_88

Public reoortlng burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing dato source_,

cjatherJng and maintaining the data needed and completing and reviewing the collection of information Send commer_ts regarding this burden estimate Or any other aspect of this

collection of information, :ncluding suggestions for reducing this burden, to Washington Headquarters Services. Dire<rotate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204. AtllngtOn, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Prc ect (0704-0188), Washington, DC 20503.

"_. AGENCY USE ON'LY (Leave blank) 2. REPORT DATE

December 1991
4. TITLE AND SUBTITLE

A PC-Based Bus Monitor Program for Use
With the Transport Systems Research Vehicle
F1S-232 Communication Interfaces
6. AUTHOR(S)

Wesley C. Easley

7. PERFORMING ORGANIZATION NAME(S) AND ADDRE$S(ES)

NASA Langley Research Center
Hampton, VA 23665-5225

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

3. REPORT TYPE AND DATI_; COVERED ,
T_h niE.alMemoranaum

5. FIJNOING NUMBERS

505-64-13-11

B. PERFORMING ORGANIZATION
REPORT NUMBER

..... '10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM-I04175

I1. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Cate_on/ 04
13. ABSTRACT (Maximum 200words)

12b. DISTRIBUTION CODE

Experiment critical use of RS-232 data busses in the Transport Systems Research Vehicle
(TSRV) operated by the Advanced Transport Operating Systems Program Office at the NASA
!.angley Research Center has recently increased. Each application utilizes a number of
nonidentical computer and peripheral configurations and requires task specific software
development.

To aid these development tasks, an IBM PC-based RS-232 bus monitoring system has been
produced. It can simultaneously monitor two communication ports of a PC or clone including
the nonstandard bus expansion of the TSRV Grid laptop computers. Display occurs in a
separate window for each port's input with binary display being selectable. A number of other
features including binary log files, screen capture to files, and a full range of communication

parameters are provided.

14. SUBJECT TERMS

Flight Operational Improvements
Experimental Flight Displa_,s

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

UNCLASSIFIED UHCLASSIFIED
,,,--.

L

NSN 7540-01-280-5500

,,,, ,=,

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

43
16. PRICE CODE

A03
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev 2-89)
Prescrtbed by ANSI Std z3g-18

